Degree $k$ linear recursions $\mod(p)$ and number fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DEGREE-k LINEAR RECURSIONS MOD(p) AND NUMBER FIELDS

Linear recursions of degree k are determined by evaluating the sequence of Generalized Fibonacci Polynomials, {Fk,n(t1, ..., tk)} (isobaric reflects of the complete symmetric polynomials) at the integer vectors (t1, ..., tk). If Fk,n(t1, ..., tk) = fn, then fn − k ∑ j=1 tjfn−j = 0, and {fn} is a linear recursion of degree k. On the one hand, the periodic properties of such sequences modulo a pr...

متن کامل

Solving Linear Recursions over All Fields

(1.1) an = c1an−1 + c2an−2 + · · ·+ cdan−d for all n ≥ d. For example, the Fibonacci sequence {Fn} = (0, 1, 1, 2, 3, 5, 8, . . . ) is defined by the linear recursion Fn = Fn−1+Fn−2 with initial values F0 = 0 and F1 = 1. (Often F0 is ignored, but the values F1 = F2 = 1 and the recursion force F0 = 0.) We will assume cd 6= 0 and then say the recursion has order d; this is analogous to the degree ...

متن کامل

Multivariate linear recursions with Markov-dependent coefficients

We study a linear recursion with random Markov-dependent coefficients. In a “regular variation in, regular variation out” setup we show that its stationary solution has a multivariate regularly varying distribution. This extends results previously established for i.i.d. coefficients.

متن کامل

On Finite Sequences Satisfying Linear Recursions

For any field k and any integers m,n with 0 6 2m 6 n + 1, let Wn be the k-vector space of sequences (x0, . . . , xn), and let Hm ⊆ Wn be the subset of sequences satisfying a degree-m linear recursion, i.e. for which there exist a0, . . . , am ∈ k such that

متن کامل

Imprimitive Ninth-degree Number Fields with Small Discriminants

We present tables of ninth-degree nonprimitive (i.e., containing a cubic subfield) number fields. Each table corresponds to one signature, except for fields with signature (3,3), for which we give two dilferent tables depending on the signature of the cubic subfield. Details related to the computation of the tables are given, as well as information about the CPU time used, the number of polynom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rocky Mountain Journal of Mathematics

سال: 2011

ISSN: 0035-7596

DOI: 10.1216/rmj-2011-41-4-1303